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Introduction

Going from linear model to quadratic model:

Linear Model
y ~ 0'x

Quadratic Model
y ~ X Ox

Solving the quadratic regression:

(Quadratic Structure)

Key Ideas and Merits

We list several key ideas of our work, which leads to the merits in both statistics and computation.

IHT for Sparse Regression: With Iiterative
hard thresholding, we can keep the parameter
estimation sparse in all iterations. If the @ is
k-sparse, then only the top-2k elements in
gradient will be useful.

Fast Gradient Estimation: Since the gradient
also has the quadratic structure, finding the
top-2k elements in the gradient can be
reduced to finding top-2k elements In
matrix multiplication.

Algorithm Design: Our method (algorithm 1) proceeds by updating the parameter estimation via
Iterative hard thresholding. The gradient estimation is accomplished by first approximately find
the top-2k elements of the gradient (algorithm 2) and then calculate the corresponding gradient
exactly. This scheme can be combined with various convex optimization algorithm, and we
provide detailed analysis for SGD and SVRG in our paper.

l 1

Statistical Optimal: Our method yield Computational Efficiency: Despite the increased
consistent estimation of the sparse dimension, our method achieves an overall sub-
parameter. The sample complexity also guadratic complexity. This can be pushed to higher
matches the optimal for sparse recovery. order polynomial regression with little modification.

Algorithm

Algorithm 1 INTERACTION HARD THRESHOLDING (INTHT)

1: Input: Dataset {x;, y; }-,, dimension p
2: Parameters: Step size 1, estimation sparsity k, batch size m, round number 1’

Output: The parameter estimation ©®

Initialize ®Y as a p x p zero matrix.

fort=0to7" — 1do
Draw a subset of indices B; from |n| randomly.
Calculate the residual u; = u(®?, x;, y;) based on for every i € B;.
Set A; € RP*™ where each column of A, is u;X;, 1 € B;. _

Set B, € RP*™ where each column of By is x;, ¢ € B;. (where Aft gives the gradient)
10:  Compute S, — ATEE(A,, By, 2k).
11:  SetS; =S, U supp(©?). —-/* inaccurate hard thresholding update */—-

12:  Compute Pg, (G?') « the gradient value G' = L 3. ., u;x;x, only calculated on .
13:  Update @' ! = H, (O — nPg, (G?)).
14: Return: © = ©1
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—-/* approximate top elements extraction */—-

Algorithm 2 APPROXIMATED TOP ELEMENTS EXTRACTION (ATEE)

1. Input: Matrix A, matrix B, top selection size k
2: Parameters: Output set size upper bound b, repetition number d, significant level A
3. Expected Output: Set A: the top-k elements in AB ' with absolute value greater than A

4: Output: Set A of indices, with size at most b (approximately contains A)

Algorithm lllustration

Compressed Matrix Multiplication: Calculate C' = AB
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Main Results

Sum over i

Denote the batch to be 1B and the loss function to be fz . Note that we define b to be the output size
of ATEE, p to be the input dimension and m to be the batch-size. We then have (adapted from [1]):

Theorem 1 (Recovering top-2k elements of the gradient). With the setting above, if we choose

b,d, A so that bA* > 432 HVfB(@)H?: and d > 48log 2ck, then the index set (\) returned by
ATEE contains the desired index set (A) with probability at least 1 — 1/c.

Also in this case the time complexity of ATEE is O (m(p + b)), and space complexity is O (m(p + b)).

In the following result, we keep all previous definition and define £ to be the number of elements in
top-2k elements with magnitude below A, K is the true sparsity of ®*, and for simplicity, we define
v=1+(p++/(4d+p)p)/2, p=K/k.Then we have

Theorem 3 (Per-round convergence of IntHT). Following the above notations, the per-round conver-
gence of Algorithm 1 satisfies the following:

o I[fATEE succeeds, i.e., A C K, then
2 _ 2
Ep, |0 - €[} < xiEp,_, [[|07 = 05| +0kp +0%jep:
where k1 = vV (1 — 2na + 2772L%k), 02A|GD — 4\/kAn\/EwA + 2kAn* A%, and

2 _ * 2 * 2
otp = max |4k |[Po (VF (@) 5+ 207Es, |[Pa(Vfs, (09)]%]]

o I[fATEE fails, ie., A ¢ A, then,

Ep, [0 - ©[|}] < weEp,_, [[|07" = ©7|}| + 0%p + husin

where ko = k1 + 2vn Loy, J%QMGD = MaX|Q|<2k+ K {4V77\/ECUEBt | Pa (V fs, (@*))HF]]

Combining the previous two results, we have the main theorem for convergence analysis:

Theorem 4 (Main result). Following the above notations, the expectation of the parameter recovery
error of Algorithm 1 is bounded by

. t
Ep, , {H@t — @*H;} < (%1 T (K2 — "31)> |e° - @*H;

1 t o ko — 1 o5 0%
— (ko — 1)) —1 : - .
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Sub-linear Elements Extraction[1]: Extract the index of large elements
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Experiment Results

We designed the quadratic regression problemy = x;' ©*x;. We generate input feature x; uniformly
from [-1, 1] and uniformly random choose K elements in ®* as the ground truth interaction.

Note that the per-step complexity is O(m(p + b)) and we claim that in order to achieve sub-quadratic
complexity we can setb = O(K)and m = O(log p). Here we first tested with different b-K and m-p
combinations.
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The two plots above shows the fraction of @™ sparse support recovery. Dark purple meaning no
recovery and yellow meaning perfect recovery. As we claimed, setting b = O(K) and p scales with
log p is sufficient for parameter recovery.

Linear convergence of quadratic regression

Inaccurate recovery using different b s

Linear convergence of 3"-ploy regression
Inaccurate recovery using different b s
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The graph on the left Is a quadratic regression problem, trying to recover a 30-sparse support in of a
200200 ®™* matrix. On the right hand side is an extension to higher order polynomial regression.
The algorithm aims to recover a 30-sparse support of a 30x30x30 tensor, which models the 3-rd order
Interaction. The error Is measured by L2 distance to ®* .
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