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Main Results

Denote the batch to be and the loss function to be . Note that we define 𝑏 to be the output size

of ATEE, 𝑝 to be the input dimension and 𝑚 to be the batch-size. We then have (adapted from [1]):

In the following result, we keep all previous definition and define to be the number of elements in 

top-2𝑘 elements with magnitude below , 𝐾 is the true sparsity of , and for simplicity, we define  

, . Then we have

Combining the previous two results, we have the main theorem for convergence analysis:
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We designed the quadratic regression problem . We generate input feature  uniformly 

from [-1, 1] and uniformly random choose K elements in as the ground truth interaction.

Note that the per-step complexity is and we claim that in order to achieve sub-quadratic

complexity we can set and . Here we first tested with different b-K and m-p

combinations.

The two plots above shows the fraction of sparse support recovery. Dark purple meaning no 

recovery and yellow meaning perfect recovery. As we claimed, setting and p scales with 

is sufficient for parameter recovery.

The graph on the left is a quadratic regression problem, trying to recover a 30-sparse support in of a 

200x200 matrix. On the right hand side is an extension to higher order polynomial regression. 

The algorithm aims to recover a 30-sparse support of a 30x30x30 tensor, which models the 3-rd order 

interaction. The error is measured by L2 distance to       .

Going from linear model to quadratic model:

Solving the quadratic regression:

Key Ideas and Merits

We list several key ideas of our work, which leads to the merits in both statistics and computation.

IHT for Sparse Regression: With iterative 

hard thresholding, we can keep the parameter 

estimation sparse in all iterations. If the     is 

k-sparse, then only the top-2k elements in 

gradient will be useful.

Fast Gradient Estimation: Since the gradient

also has the quadratic structure, finding the 

top-2k elements in the gradient can be 

reduced to finding top-2k elements in 

matrix multiplication.

Algorithm Design: Our method (algorithm 1) proceeds by updating the parameter estimation via 

iterative hard thresholding. The gradient estimation is accomplished by first approximately find 

the top-2k elements of the gradient (algorithm 2) and then calculate the corresponding gradient 

exactly. This scheme can be combined with various convex optimization algorithm, and we 

provide detailed analysis for SGD and SVRG in our paper.

Statistical Optimal: Our  method yield 

consistent estimation of the sparse 

parameter. The sample complexity also 

matches the optimal for sparse recovery.

Computational Efficiency: Despite the increased 

dimension, our method achieves an overall sub-

quadratic complexity. This can be pushed to higher 

order polynomial regression with little modification.
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