Interaction Hard Thresholding:
 Consistent Sparse Quadratic Regression in Sub-quadratic Time and Space

Shuo Yang*, Yanyao Shen*, Sujay Sanghavi

Introduction

Going from linear model to quadratic model:

\[\)| Linear Model | Quadratic Model |
| ---: | :--- |
| $y \sim \boldsymbol{\theta}^{\top} \mathbf{x}$ | $y \sim \mathbf{x}^{\top} \boldsymbol{\Theta} \mathbf{x}$ |

\]

Solving the quadratic regression

$$
\text { (Quadratic Structure) } \min _{\Theta:\|\Theta\|_{0} \leq K} \frac{1}{n} \sum_{i=0}^{n-1} f\left(\mathbf{x}_{i}^{\top} \boldsymbol{\Theta} \mathbf{x}_{i}, y_{i}\right) \quad:=F_{n}(\boldsymbol{\Theta})
$$

Key Ideas and Merits

Algorithm 1 Interaction Hard Thresholding (IntHT)

1. Input: Dataset $\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$, dimension p

Parameters: Step size η, estimation sparsity k, batch size m, round number T
3: Output: The parameter estimation Θ
4: Initialize $\mathbf{\Theta}^{0}$ as a $p \times p$ zero matrix.
5. for $t=0$ to $T-1$ do
5: for $t=0$ to $T-1$ do
6: Draw a subset of indi
6: \quad Draw a subset of indices \mathcal{B}_{t} from $[n]$ randomly
$\begin{array}{ll}\text { 7: } & \text { Calculate the residual } u_{i}=u\left(\boldsymbol{\Theta}^{t}, \mathbf{x}_{i}, y_{i}\right) \text { based on for every } i \in \mathcal{B}_{t} \\ \text { 8: } & \text { Set } \mathbf{A}_{t} \in \mathbb{R}^{p \times m} \text {, where each column of } \mathbf{A}_{t} \text { is } u_{i} \mathbf{x}_{i}, i \in \mathcal{B}_{t} .\end{array}$
9: Set $\mathbf{B}_{t} \in \mathbb{R}^{p \times m}$, where each column of \mathbf{B}_{t} is $\mathbf{x}_{i}, i \in \mathcal{B}_{t}$. (where $\frac{\mathbf{A}_{t} \mathbf{B}_{t}^{\top}}{m}$ gives the gradient)
10: Compute $\widetilde{S}_{t}=\operatorname{ATEE}\left(\mathbf{A}_{t}, \mathbf{B}_{t}, 2 k\right)$.
11: \quad Set $S_{t}=\widetilde{S}_{t} \cup \operatorname{supp}\left(\boldsymbol{\Theta}^{t}\right)$.

- - * approximate top elements extraction */-

12. Set $S_{t}=\tilde{S}_{t} \cup \operatorname{supp}\left(\boldsymbol{\Theta}^{t}\right)$. \quad.-/ inaccurate hard thresholding update */-

13: Update $\boldsymbol{\Theta}^{t+1}=\mathcal{H}_{k}\left(\boldsymbol{\Theta}^{t}-\eta \mathcal{P}_{S_{t}}\left(\mathbf{G}^{t}\right)\right)$
14: Return: $\widehat{\boldsymbol{\Theta}}=\boldsymbol{\Theta}$

[^0]
Algorithm Illustration

Compressed Matrix Multiplication: Calculate $C=A B$

Sub-linear Elements Extraction[1]: Extract the index of large elements

Experiment Results
We designed the quadratic regression problem $y=\mathbf{x}_{\mathbf{i}}^{\mathrm{T}} \Theta^{\star} \mathbf{x}_{\mathbf{i}}$. We generate input feature $\mathbf{x}_{\mathbf{i}}$ uniformly We designed the quadratic regression problem $y=x_{i}^{\top} \Theta^{*} x_{i}$. We generate input feature x_{i} un
from $[-1,1]$ and uniformly random choose K elements in Θ^{\star} as the ground truth interaction.

Note that the per-step complexity is $\widetilde{O}(m(p+b))$ and we claim that in order to achieve sub-quadratic complexity we can set $b=O(K)$ and $m=O(\log p)$. Here we first tested with different b -K and $\mathrm{m}-\mathrm{p}$ combinations.

The two plots above shows the fraction of Θ^{\star} sparse support recovery. Dark purple meaning no recovery and yellow meaning perfect recovery. As we claimed, setting $b=O(K)$ and p scales with $\log p$ is sufficient for parameter recovery
Linear convergence of quadratic regression
Linear convergence of $3^{\text {rdd-ploy regression }}$
Inaccurate recovery using different b Inaccurate recovery using different bs

Theorem 4 (Main result). Following the above notations, the expectation of the parameter recovery Theorem 4 (Main result). Following
error of Algorithm I is bounded by

$$
\begin{aligned}
& \mathbb{E}_{B_{t}, \Phi_{t}}\left[\left\|\boldsymbol{\Theta}^{t}-\boldsymbol{\Theta}^{\star}\right\|_{F}^{2}\right] \leq\left(\kappa_{1}+\frac{1}{c}\left(\kappa_{2}-\kappa_{1}\right)\right)^{t}\left\|\boldsymbol{\Theta}^{0}-\boldsymbol{\Theta}^{\star}\right\|_{F}^{2} \\
& +\left[\left(\kappa_{1}+\frac{1}{c}\left(\kappa_{2}-\kappa_{1}\right)\right)^{t}-1\right]\left(\frac{\sigma_{1}^{2}}{\kappa_{1}-1}\right)+\frac{\kappa_{2}-1}{c-c \kappa_{1}+\kappa_{1}-\kappa_{2}}\left(\frac{\sigma_{2}^{2}}{\kappa_{2}-1}-\frac{\sigma_{1}^{2}}{\kappa_{1}-1}\right)
\end{aligned}
$$

[^0]: Algorithm 2 Approximated Top Elements Extraction (ATEE
 1: Input: Matrix A, matrix B, top selection size k
 2: Parameters: Output set size upper bound b, repetition number d, significant level Δ
 3: Expected Output: Set $\Lambda \Lambda$ the tor- k elents in ${ }^{\top}$.
 . Expected Output: Set Λ : the top- k elements in $\mathbf{A B}^{\top}$ with absolute value greater than Δ
 4: Output: Set $\widetilde{\Lambda}$ of indices, with size at most b (approximately contains Λ)

